A MODULE AS A TORSION-FREE COVER

BY

JOHN J. HUTCHINSON AND MARK L. TEPLY

ABSTRACT

Let R be a ring, and let $(\mathcal{T}, \mathcal{F})$ be an hereditary torsion theory of left R-modules. An epimorphism $\psi : M \to X$ is called a torsion-free cover of X if (1) $M \in \mathcal{F}$, (2) every homomorphism from a torsion-free module into X can be factored through M, and (3) ker ψ contains no nonzero \mathcal{T} -closed submodules of M. Conditions on M and N are studied to determine when the natural maps $M \rightarrow M/N$ and $O(M) \rightarrow O(M)/N$ are torsion-free covers, when $O(M)$ is the localization of M with respect to $(\mathcal{I}, \mathcal{F})$. If $M \to M/N$ is a torsion-free cover and M is projective, then $N \subseteq$ rad M. Consequently, the concepts of projective cover and torsion-free cover coincide in some interesting cases.

Let R be a ring with identity, and let $\mathbb{R}M$ be the category of unital left R-modules. Let $(\mathcal{T}, \mathcal{F})$ be a hereditary torsion theory on $_{R}\mathcal{M}$ with filter of left ideals \mathcal{L} . Let R be torsion free and let Q be the quotient ring of R with respect to $(\mathcal{T}, \mathcal{F})$. If $X \in_R \mathcal{M}$, let $E(X)$ denote an injective hull of X, and $O(X)$ the quotient module of X with respect to $(\mathcal{T}, \mathcal{F})$. For all notions concerning torsion theories and other undefined terms, we refer the reader to [4].

Throughout this paper let M be a torsion-free module with submodule N and canonical epimorphism $\pi : M \to M/N$. Let $\pi^* : \text{Hom}_R (Q, M) \to$ Hom_R $(Q, M/N)$ be the canonical R (and Q) homomorphism. The mapping $\pi : M \rightarrow M/N$ is called a *precover* for M/N if any $f \in Hom(X, M/N)$, where $X \in \mathcal{F}$, can be lifted canonically to Hom(*X*, *M*). The precover is a *torsion-free cover* if, in addition, N contains no nonzero \mathcal{T} -closed submodules of M. In order to eliminate trivial cases we will henceforth assume that $M/N \notin \mathcal{F}$.

The existence of torsion-free covers for modules over a commutative integral domain was first examined by Enochs [3]. The existence of torsion-free covers for abstract torsion theories over more general rings is the subject of a number of papers including [5] and [7]. However, the problem of determining when a module is a torsion-free cover of another remains a distinct problem, which was

Received April 24, 1983

first investigated by Banachewski [1]. For perfect torsion theories, Banachewski described the torsion-free cover of a module X as the evaluation map applied to a certain submodule of $\text{Hom}_{R}(Q, E(X))$. We wish to study the more accessible situation where the canonical map $M \to M/N$ is a torsion-free cover. Recently, Cheatham [2] and Matlis [6] have obtained results about when a natural map from a quotient field or a commutative integral domain can be the cover of a module. In this paper we generalize a result of [2] and the main result of [6] to more general types of modules in the setting of an abstract torsion theory. (See Theorem 1 and Corollaries 4 and 5.) This enables us to obtain a result relating torsion-free covers to projective covers. Since the proofs in [2] and [6] rely heavily on properties of commutative rings, our proofs must necessarily be quite different from the previous ones; fortunately, the proofs of our key results (Theorems 2 and 3) are considerably shorter than the corresponding proofs in [6].

For the sake of easy reference, we include the following folk theorems, whose proofs are easy modifications of published results.

THEOREM A. If E, E', and E'' are R-modules with $\psi : E \to E'$ and $\psi' : E' \rightarrow E''$ torsion-free covers and if $f : E \rightarrow E'$ satisfies $f\psi' = \psi$, then f is an *isomorphism.*

PROOF. See the proof of [3, theorem 2].

THEOREM B. Suppose that $X \in_R M$ and that $(\mathcal{I}, \mathcal{F})$ is perfect. Let $H =$ Hom_R $(Q, E(X))$ and $C(X) = \{f \in H | (1)f \in X\}$. Define $\phi : C(X) \rightarrow X$ by $(f)\phi = (1)f$. Then $\phi : C(X) \rightarrow X$ is a torsion-free cover of X.

PROOF. See [1] or [5, page 247].

We are now ready to give a generalization of [2, theorem 1].

THEOREM 1. Suppose that $(\mathcal{J}, \mathcal{F})$ has exact localization, that M is \mathcal{J} -injective, and that $M/N \notin \mathcal{F}$. Then the following statements are equivalent.

(1) $\pi : M \rightarrow M/N$ is a torsion-free cover.

(2) M/N is \mathcal{T} -injective and π^* is an isomorphism.

(3) M/N is $\mathcal{T}\text{-}\text{injective}$, $\text{Hom}_R(Q, N) = 0$, and $\text{Ext}_R(Q, N) = 0$.

(4) Ext_R $(X, N) = 0$ for all $X \in \mathcal{F}$ and $\text{Hom}_{R}(Q, N) = 0$.

PROOF. (1) \Rightarrow (2). If $I \in \mathcal{L}$ and $f : I \rightarrow M/N$, there exists $g : I \rightarrow M$ such that $g\pi = f$. There exists $h : R \to M$ such that $h|_I = g$. Then $h\pi$ extends f; so M/N is \mathcal{T} -injective. By the definition of torsion-free cover we have the following exact sequence:

$$
0 \longrightarrow \text{Hom}(Q, N) \longrightarrow \text{Hom}(Q, M) \longrightarrow^{\pi^*} \text{Hom}(Q, M/N) \longrightarrow 0.
$$

If $0 \neq f \in Hom(Q, N)$, then Imf, being a torsion-free image of a torsion-free \mathcal{T} -injective module, is a torsion-free \mathcal{T} -injective module [4, prop. 16.1]. Hence Im f is \mathcal{T} -closed in M; so $f=0$. Hence Hom(Q, N) = 0 and π^* is an isomorphism.

(2) \Rightarrow (3). Since π^* is an isomorphism, we have Hom(Q, N) = 0 and

$$
0 \longrightarrow \text{Hom}(Q, M) \stackrel{\pi^*}{\longrightarrow} \text{Hom}(Q, M/N) \longrightarrow \text{Ext}(Q, N) \longrightarrow \text{Ext}(Q, M)
$$

is exact. Since M is \mathcal{T} -injective, we also have the exact sequence

 $0 = \text{Ext}(Q/R, M) \rightarrow \text{Ext}(Q, M) \rightarrow \text{Ext}(R, M) = 0.$

Hence $Ext(Q, M) = 0$, and it follows that $Ext(Q, N) = 0$.

 $(3) \Rightarrow (4)$. If $X \in \mathcal{F}$, then we have the exact sequence:

$$
Ext(Q(X), N) \to Ext(X, N) \to Ext^{2}(Q(X)/X, N).
$$

If $0 \rightarrow L \rightarrow \bigoplus Q \rightarrow Q(X) \rightarrow 0$ is a free resolution of $Q(X)$ as a Q-module, then L is a Q-module and we have the exact sequence:

$$
0 = \text{Hom}(\bigoplus Q, N) \to \text{Hom}(L, N) \to \text{Ext}(Q(X), N) \to \text{Ext}(\bigoplus Q, N) = 0.
$$

Since L is a Q-module, then Hom(L, N) = 0 by (3), and hence $Ext(Q(X), N)$ = 0.

Since $Q(X)/X \in \mathcal{T}$, we have by the exactness of the localizing functor of (\mathcal{T}, \mathcal{F}) and [4, prop. 16.1] that $Ext^2(Q(X)/X, M) = 0$. Hence the exactness of

$$
0 = \text{Ext}(Q(X)/X, M/N) \to \text{Ext}^{2}(Q(X)/X, N) \to \text{Ext}^{2}(Q(X)/X, M) = 0
$$

implies that $Ext^2(Q(X)/X, N) = 0$. Hence $Ext(X, N) = 0$.

 $(4) \Rightarrow (1)$. If $X \in \mathcal{F}$, then

$$
Hom(X, M) \to Hom(X, M/N) \to Ext(X, N) = 0
$$

and hence maps from X to *M/N* can be factored through M.

If C is contained in N and C is a nonzero $\mathcal T$ -closed submodule of M, then $Q(C) = C$ and C is a left Q-module. Hence $0 \neq Hom(Q, C) \subseteq Hom(Q, N)$, which is impossible. Hence N contains no $\mathcal T$ -closed submodules.

Our next result gives a key property of $E(M/N)$ in the case where $M \rightarrow M/N$ is a torsion-free cover.

THEOREM 2. If $\pi : M \rightarrow M/N$ is a torsion-free cover, then $E(M)/N$ is an *essential extension of M/N.*

PROOF. Suppose that $0 \neq e + N \in E(M)/N$ with $R(e + N) \cap (M/N) = 0$. It follows that $Re \cap M \subset N$ and that the epimorphism π_1 : $Re + M \rightarrow M/N$ given by $(re + m)\pi_1 = m + N$ $(r \in R, m \in M)$ is well-defined with ker $\pi_1 = Re + N$.

If $i : M \rightarrow Re + M$ is the inclusion map, then clearly $i\pi_1 = \pi$. If $X \in \mathcal{F}$ and $g: X \to M/N$, there exists $h: X \to M$ such that $h\pi = g$. Then $h\overline{\pi} = h\pi = g$; so *hi* lifts g to $M + Re$. If C is a submodule of ker π_1 that is \mathcal{T} -closed in $Re + M$, then $C \cap M$ is \mathcal{T} -closed in M. But

$$
C \cap M \subseteq \ker \pi_1 \cap M = (Re + N) \cap M \subseteq N.
$$

Hence $C = 0$; and so π_1 : $Re + M \rightarrow M/N$ is a torsion-free cover. Since $i\pi_1 = \pi$, we have by Theorem A that *i* is an isomorphism. Hence $Re + M = M$ and $e \in M$, which is contrary to the assumption.

THEOREM 3. Let $(\mathcal{T}, \mathcal{F})$ be a perfect torsion theory. If $\pi : M \to M/N$ is a *torsion-free cover, then* $Q(M) \rightarrow Q(M)/N$ *is a torsion-free cover.*

PROOF. By Theorem 2 we may assume that $E(M/N) = E(O(M)/N)$. Let $H = \text{Hom}(Q, E(M/N))$ and $C = \{f \in H | (1)f \in Q(M)/N\}.$

If $x \in Q(M)$, define $h_x \in H$ by $(q)h_x = qx + N$. Since N has no nonzero *Q*-submodules, we may assume that $Q(M) \subseteq C$ via the correspondence $x \to h_x$. By Theorem B we have that C is a torsion-free cover of $Q(M)/N$, and we may identify M with $\{f \in H \mid (1)f \in M/N\}$.

If $f \in C \setminus M$, then $(1)f \in Q(M)/N$ and there exists $J \in \mathcal{L}$ such that $J((1)f) \subseteq$ *M/N.* If $r \in J$, then using the R-module structure on H and F, we have

$$
(1)(rf) = (r)f = r((1)f) \in M/N.
$$

Thus, under the isomorphism, $r \in M$, and we have $C/M \in \mathcal{T}$. Since $f \notin M$, $0 \neq (1) f \in Q(M)/N$. Since M/N is essential in $Q(M)/N$ by Theorem 2, there exists $r \in R$ with $0 \neq r((1)f) = (1)(rf) \in M/N$. Hence $0 \neq rf \in M$ and M is essential in C. We conclude that $M \subset O(M) \subset C \subset E(M)$ with $C/M \in \mathcal{T}$. Hence $C = Q(M)$ and $Q(M) \rightarrow Q(M)/N$ is a torsion-free cover.

Our next two corollaries are generalizations of the main result (Theorem 1) of [6].

COROLLARY 4. *Suppose that N contains no nonzero J--closed submodules of* M. If $(\mathcal{T}, \mathcal{F})$ is perfect, then the following statements are equivalent.

- (1) $M \rightarrow M/N$ is a torsion-free cover.
- (2) $Q(M) \rightarrow Q(M)/N$ is a torsion-free cover.
- (3) Ext_R $(X, N) = 0$ for all $X \in \mathcal{F}$.

PROOF. (2) \Leftrightarrow (3). The standing hypothesis gives that Hom(Q, N) = 0; so this equivalence follows from Theorem 1.

 $(1) \Rightarrow (2)$ is Theorem 3.

 $(3) \Rightarrow (1)$ is clear.

COROLLARY 5. If $(\mathcal{J}, \mathcal{F})$ is perfect, then the following statements are *equivalent.*

(1) $\pi : M \rightarrow M/N$ is a torsion-free cover.

(2) π : $O(M) \rightarrow O(M)/N$ is a torsion-free cover and $O(M)/N$ is the \mathcal{I} -injective *hull of M/N.*

PROOF. (1) \Rightarrow (2). The first part follows from Theorem 3. The second part follows from Theorem 2 and [5, prop. 2.4].

(2) \Rightarrow (1). By Theorem 1 we have Ext(X, N) = 0 for all $X \in \mathcal{F}$; and hence $\pi : M \rightarrow M/N$ is a precover. If $C \subseteq N$ is a nonzero \mathcal{T} -closed submodule of M, then C is not \mathcal{T} -closed in $Q(M)$. Now $Q(C)$ is the \mathcal{T} -closure of C in $Q(M)$, $Q(C) \neq C$, and $Q(C) \cap M = C$. Thus $(Q(C)/N) \cap (M/N) = 0$. Since *M/N* is essential in $O(M)/N$, we have a contradiction.

COROLLARY 6. If $(\mathcal{I}, \mathcal{F})$ is perfect and $\pi : M \rightarrow M/N$ is a torsion-free cover, *then the following statements hold.*

- (1) $\text{Hom}_{R}(Q, N) = 0.$
- (2) Ext_R $(N, X) = 0$ *for all* $X \in \mathcal{F}$.
- (3) $E(M/N) = E(M)/N$.

PROOF. By Theorems 3 and 1 we have (1) and (2). By an obvious modification of the proof that $Q(M)/N$ is \mathcal{T} -injective, we see that $E(M)/N$ is injective.

THEOREM 7. If π : $M \rightarrow M/N$ is a torsion-free cover and M is projective, then $N \subset \text{rad } M$.

PROOF. The result is trivial if $M = rad M$; so suppose there exists a maximal submodule X of M with $N \not\subset X$. Then $M = N + X$, $M/N \cong X/(X \cap N)$, and we have a natural epimorphism $\theta: X \rightarrow M/N$. Since M is projective, there exists $f: M \to X$ such that $f\theta = \pi$. Since ker $f \subseteq \ker \pi$, we have that f is a monomorphism.

Let $F = \text{Im } f$ and $\psi = \theta \bigg|_F$. We will show that F and ψ provide a torsion-free

cover for *M/N*. Suppose that $g: Y \rightarrow M/N$, where $Y \in \mathcal{F}$. Then there exists $h: Y \rightarrow M$, and we have the following commutative diagram:

Then $hf\psi = h\pi = g$; so *hf* lifts g to *F*. Since ψ is onto, there are no \mathcal{T} -closed submodules of F contained in ker ψ (as (ker ψ)f⁻¹ = N). Hence F is a torsionfree cover of *M/N.*

Consider the inclusion map $i: F \rightarrow M$ and the following commutative diagram:

By Theorem A, *i* is an isomorphism; so $F = M$. Since $F \subseteq X$, we have a contradiction.

Theorem 7 enables us to relate torsion-free covers to projective covers in the next result. In particular, it shows that the torsion-free cover $R \rightarrow R/I$ studied by Matlis [6] for integral domains is actually a projective cover of *R/L*

COROLLARY *8. If M is projective, if every proper submodule of M is contained* in a maximal submodule (for example, if M is finitely generated), and if $\pi : M \rightarrow M/N$ is a torsion-free cover, then $\pi : M \rightarrow M/N$ is a projective cover.

A module has finite (Goldie) dimension if it contains no infinite direct sums of nonzero modules.

THEOREM 9. Suppose that M is finite dimensional. If $\pi : M \rightarrow M/N$ is a *torsion-free cover and* $\alpha : M \rightarrow M/N$ *is a precover, then* $\alpha : M \rightarrow M/N$ *is a torsion-free cover.*

PROOF. There exist mappings f and g such that the following diagram commutes:

Since $f_{\pi} = \alpha$ and $g_{\alpha} = \pi$, we have $\pi = g_{\alpha} = gf_{\pi}$. By Theorem A we have that gf is an isomorphism. Let $\beta = (gf)^{-1}$. Then $1 = gf\beta$ and $f\beta\pi = f\pi = \alpha$. Hence by replacing f by f β , we may assume that $f\pi = \alpha$, $g\alpha = \pi$, and $gf = 1$. Let $e = fg$. Then $e^2 = e$, and $M \cong \text{Im } e \oplus \ker e = \text{Im } g \oplus \ker f \cong M \oplus \ker f$. Since M is finite dimensional, we must have ker $f = 0$. Thus f is an isomorphism, and the result follows.

Our final result extends [6, prop. 1].

COROLLARY 10. Suppose that M is a finite dimensional, projective module and *that* $\pi : M \rightarrow M/N$ *is a torsion-free cover.*

(1) If $\alpha : M \to M/N$ is an epimorphism, then $\alpha : M \to M/N$ is a torsion-free *cover.*

(2) If $({\mathcal T},{\mathcal F})$ is perfect and α : $O(M) \rightarrow O(M)/N$ is an epimorphism, then $\alpha: Q(M) \rightarrow Q(M)/N$ is a torsion-free cover.

PROOF. The projectivity of M gives that α is a precover; so (1) follows from Theorem 9. For (2) we have the following (not necessarily commutative) diagram:

The mapping f is obtained by Theorem 3, and g is obtained by extending the map given by the projectivity of M. We have $g\alpha = \pi$ on M and $f\pi = \alpha$. If $m \in M$, we have $m\pi = mg\alpha = mgf\pi$; and so $mgf \in M$. Hence by Theorem A, *gf* is an isomorphism on M. Since $Q(M)$ is the \mathcal{T} -injective hull of M, then *gf* is also an isomorphism on $Q(M)$. If $\beta = (gf)^{-1}$, we have $gf\beta = 1$; as in the proof of Theorem 9, f is an isomorphism.

ACKNOWLEDGEMENT

The work for this paper was done while the first-named author was a visitor at

the University of Florida. He is grateful for the kind hospitality shown to him during that visit.

REFERENCES

1. B. Banaschewski, *On coverings of modules,* Math. Nachr. 31 (1966), 51-71.

2. T, Cheatham, *The quotient field as a torsion-free covering module,* Isr. J. Math. 33 (1979), 172-176.

3. E. Enochs, *Torsion free covering modules,* Proc. Am. Math. Soc. 14 (1963), 884-889.

4. J. Golan, *Localization of Noncommutative Rings,* Pure and Applied Math. Series 30, Marcel Dekker, New York, 1975.

5. J. Golan and M. Teply, *Torsion-free covers,* Isr. J. Math. 15 (1973), 237-256.

6. E. Matlis, *The ring as a torsion-free cover,* Isr. J. Math. 37 (1980), 211-230.

7. M. Teply, *Torsion-free injective modules,* Pacific J. Math. 28 (1969), 441-453.

DEPARTMENT OF MATHEMATICS WICHITA STATE UNIVERSITY WICHITA, KS 67208 USA

DEPARTMENT OF MATHEMATICS UNIVERSITY OF FLORIDA GAINESVILLE, FL 32611 USA