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A MODULE AS A TORSION-FREE COVER 

BY 

JOHN J. HUTCHINSON AND MARK L. TEPLY 

ABSTRACT 

Let R be a ring, and let (if, of) be an hereditary torsion theory of left 
R-modules. An epimorphism to : M ~ X is called a torsion-free cover of X if 
(1) M E ~:, (2) every homomorphism from a torsion-free module into X can be 
factored through M, and (3) ker tO contains no nonzero if-closed submodules of 
M. Conditions on M and N are studied to determine when the natural maps 
M--> M/N and O(M)--> Q(M)/N are torsion-free covers, when Q(M)is the 
localization of M with respect to (if, ,~). If M-->M/N is a torsion-free cover 
and M is projective, then N C_ rad M. Consequently, the concepts of projective 
cover and torsion-free cover coincide in some interesting cases. 

Let  R be a ring with identity, and let RM be the ca tegory of unital left 

R-modules .  Let  ( J ,  ,~) be a heredi tary torsion theory  on RM with filter of left 

ideals ~ .  Let  R be torsion free and let Q be the quot ient  ring of R with respect 

to (if, ~ ) .  If X ~ RM, let E(X)  denote  an injective hull of X, and Q(X)  the 

quot ient  module  of X with respect to (3 ,  if) .  For  all not ions concerning torsion 

theories and other  undefined terms, we refer the reader  to [4]. 

Th roughou t  this paper  let M be a torsion-free module  with submodule  

N and canonical  ep imorphism ~r : M--~ M/N. Let  7r* : H o m R  (Q,M)--* 
HOmR (Q,M/N)  be the canonical  R (and Q)  homomorph i sm.  The  mapping  

7r:M---~M/N is called a precover for M / N  if any f E Hom(X,  M/N),  where 

X E ~,  can be lifted canonically to Hom(X,  M).  The  precover  is a torsion-free 
cover if, in addition, N contains no nonzero  J--closed submodules  of M. In order  

to eliminate trivial cases we will hencefor th  assume that M / N ~  ~'. 

The existence of torsion-free covers for modules  over  a commuta t ive  integral 

domain  was first examined by Enochs  [3]. The  existence of torsion-free covers 

for abstract  torsion theories over  more  general  rings is the subject  of a number  of 

papers  including [5] and [7]. However ,  the problem of determining when a 

module  is a torsion-free cover  of another  remains a distinct problem,  which was 
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first investigated by Banachewski [1]. For perfect torsion theories, Banachewski 

described the torsion-free cover of a module X as the evaluation map applied to 

a certain submodule of HomR (O, E(X) ) .  We wish to study the more accessible 

situation where the canonical map M ~ M / N  is a torsion-free cover. Recently, 

Cheatham [2] and Matlis [6] have obtained results about when a natural map 

from a quotient field or a commutative integral domain can be the cover of a 

module. In this paper we generalize a result of [2] and the main result of [6] to 

more general types of modules in the setting of an abstract torsion theory. (See 

Theorem 1 and Corollaries 4 and 5.) This enables us to obtain a result relating 

torsion-free covers to projective covers. Since the proofs in [2] and [6] rely 

heavily on properties of commutative rings, our proofs must necessarily be quite 

different from the previous ones; fortunately, the proofs of our key results 

(Theorems 2 and 3) are considerably shorter than the corresponding proofs in 

[6]. 

For the sake of easy reference, we include the following folk theorems, whose 

proofs are easy modifications of published results. 

THEOREM A. I f  E, E' ,  and E" are R-modules with ~O : E----~E" and 

~' : E'---~ E" torsion-free covers and if f : E ~ E'  satisl~es f~ '  = ~b, then f is an 
isomorphism. 

PROOF. See the proof of [3, theorem 2]. 

Tr~EOREM B. Suppose that X ~ RM and that (3,  ~ )  is perfect. Let H = 

HomR (Q, E ( X ) )  and C ( X )  = {f ~ H [(1)f E X}. Define ~b : C(X)--~ X by 

(f)r  = (1)f. Then ch : C(X)--~ X is a torsion-free cover of X. 

PROOF. See [1] or [5, page 247]. 

We are now ready to give a generalization of [2, theorem 1]. 

THEOREM 1. Suppose that ( ~r, ~;) has exact localization, that M is f f  -injective, 

and that M/N~_ J;. Then the following statements are equivalent. 

(1) zr : M - - ~ M / N  is a torsion-free cover. 

(2) M / N  is ff-injective and r is an isomorphism. 

(3) M / N  is 3--injective, HomR (Q, N) = 0, and ExtR (O, N) -- 0. 

(4) ExtR (X, N) = 0 for all X E J; and HOmR (Q, N) = 0. 

PROOF. (1) ~ (2). If I E ~ and f : I---> M/N,  there exists g : I--> M such that 

gTr = f. There exists h : R --> M such that h Ix = g. Then hzr extends f ;  so M / N  

is ff-injective. By the definition of torsion-free cover we have the following exact 

sequence: 
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0 ,Hom(Q,N)---~Hom(Q,M) ,Hom(Q,M/N)-----~O. 

If 0 F  f ~ Hom(Q,N),  then Imf, being a torsion-free image of a torsion-free 

3--injective module, is a torsion-free J--injective module [4, prop. 16.1]. Hence 

I m f  is if-closed in M; so f = 0 .  Hence H o m ( Q , N ) = 0  and 7r* is an 

isomorphism. 
(2) ~ (3). Since ~r* is an isomorphism, we have Horn(Q, N ) =  0 and 

0 ; Hom(Q, M)-2-~ Hom(Q, M/N) , Ext(Q, N)----~ Ext(Q, M) 

is exact. Since M is ~--injective, we also have the exact sequence 

0 = Ext(Q/R, M)---~ Ext(Q, M)---~ Ext(R, M) = 0. 

Hence Ext(Q, M ) =  0, and it follows that Ext(Q, N ) =  0. 

(3) ~ (4). If X ~ ~, then we have the exact sequence: 

Ext(Q(X), N)---~ Ext(X, N)---~ Ext2( Q ( X )/ X, N ). 

If 0---~ L ~ E) Q ~ Q (X)--* 0 is a free resolution of Q (X) as a Q-module, then L 

is a Q-module and we have the exact sequence: 

0 = Hom(~)Q, N)---~ Horn(L, N)--~ Ext(Q(X), N)---~ Ext(@Q, N) = 0. 

Since L is a Q-module, then Horn(L, N) = 0 by (3), and hence Ext(Q(X), N) = 

0. 
Since Q(X)/X ~ ~-, we have by the exactness of the localizing functor of 

(3, ~ )  and [4, prop. 16.1] that ExtZ(Q(X)/X,M)= 0. Hence the exactness of 

0 = Ext(Q(X)/X, M/N)---~ Ext2(Q(X)/X, N)--~ Ext2(Q(X)/X, M) = 0 

implies that Ext2(Q(X)/X, N) --- 0. Hence Ext(X, N) = 0. 

(4) ~ (1). If X ~ if, then 

Hom(X, M)---~ Horn(X, M/N)--~ Ext(X, N) = 0 

and hence maps from X to M/N can be factored through M. 

If C is contained in N and C is a nonzero J--closed submodule of M, then 

Q(C)  = C and C is a left Q-module. Hence O~Hom(O,C)CHom(Q,N), 
which is impossible. Hence N contains no ~--closed submodules. 

Our next result gives a key property of E(M/N) in the case where M ~ M]N 
is a torsion-free cover. 
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THEOREM 2. If 7r : M - - ~ M / N  is a torsion-free cover, then E ( M ) / N  is an 

essential extension of M/N.  

PROOF. Suppose  that  OP e + N @ E ( M ) / N  with R(e  + N)  N ( M / N )  = 0. It 

follows that  Re n M c_ N and that  the ep imorph i sm 7rl : Re + M ~ M / N  given 

by (re + m )Tr~ = m + N (r E R, m E M)  is well-defined with ker  zrl = Re + N. 

If i : M ~ Re + M is the inclusion map,  then clearly iTr~ = ~'. If X E ~ and 

g : X---) M/N,  there exists h : X----~ M such that  h~" = g. Then  hi~r~ = hTr = g;  so 

hi lifts g to M + Re. If C is a submodu le  of ker  7rl that  is 3--closed in Re + M, 

then C n M is 9--closed in M. But  

C A  M C_ ker  7rl n M = (Re + N ) N  M_C N. 

Hence  C = 0; and so ~ l :  Re + M---~ M / N  is a tors ion-free cover.  Since iTr~ = ~r, 

we have by T h e o r e m  A that  i is an i somorphism.  Hence  Re + M  = M and 

e ~ M, which is cont rary  to the assumpt ion .  

THEOREM 3. Let (if, ,~) be a perfect torsion theory. If rr : M--~ M / N  is a 

torsion-free cover, then Q (M)--~ Q ( M ) / N  is a torsion-free cover. 

PROOF. By T h e o r e m  2 we may  assume that  E ( M / N ) =  E ( Q ( M ) / N ) .  Let  

H = Horn(Q,  E ( M / N ) )  and C = {f @ n I(1)f  E Q(M)/N} .  

If x E Q ( M ) ,  define hx E H by (q)hx = qx +N. Since N has no nonzero  

Q - s u b m o d u l e s ,  we may  assume that  Q(M)C_ C via the co r re spondence  x ~ hx. 

By T h e o r e m  B we have that  C is a tors ion-free  cover  of Q(M)/N,  and we may  

identify M with {f E H I ( l ) f  ~ M/N} .  

If f E C \ M ,  then (1)f E Q ( M ) / N  and there  exists J E ~ such that  J ( ( l ) f )C_ 

M/N.  If r E J, then using the R - m o d u l e  s t ructure  on H and F, we have 

(1)(rf)  = (r)f  = r((1)f)  @ M/N.  

Thus,  under  the i somorphism,  ff ~ M, and we have C / M  ~ J-. Since f f f  M, 

0 ~  (1)f ~ Q(M)/N.  Since M / N  is essential  in Q ( M ) / N  by T h e o r e m  2, there  

exists r ~ R  with O ~ r ( ( 1 ) f ) = ( 1 ) ( r f ) @ M / N .  Hence  O ~ r f E M  and M is 

essential  in C. We conclude that  MC_ Q ( M )  C_ C C_ E ( M )  with C / M  E J-. 

Hence  C = Q ( M )  and Q ( M ) - *  Q ( M ) / N  is a tors ion-free  cover.  

Our  next two corol lar ies  are general izat ions  of the main result (Theo rem 1) of 

[6]. 

COROLLARY 4. Suppose that N contains no nonzero J--closed submodules of 

M. I f  ( J ,  ,~) is perfect, then the following statements are equivalent. 
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(1) M---> M / N  is a torsion-free cover 

(2) O(M)---~ Q ( M ) / N  is a torsion-free cover. 

(3) ExtR (X, N) = 0 for all X E ~. 

PROOF. (2) r (3). The standing hypothesis gives that Hom(Q, N) = 0; so this 

equivalence follows from Theorem 1. 

(1) ::), (2) is Theorem 3. 

(3) :::> (1) is clear. 

COROLLARY 5. If (3-,,~) is perfect, then the following statements are 

equivalent. 

(1) 7r : M---> M / N  is a torsion-free cover. 

(2) ~r : Q (M)--~ Q ( M ) / N  is a torsion-free cover and Q ( M ) / N  is the i f  -injective 

hull of M/N.  

PROOF. (1) :::), (2). The first part follows from Theorem 3. The second part 

follows from Theorem 2 and [5, prop. 2.4]. 

(2) ~ (1). By Theorem 1 we have E x t ( X , N ) = 0  for all X E , ~ ;  and hence 

7r : M--* M / N  is a precover. If C _C N is a nonzero if-closed submodule of M, 

then C is not if-closed in Q(M).  Now Q(C)  is the if-closure of C in Q(M),  

Q ( C ) ~  C, and Q ( C ) A M =  C. Thus ( Q ( C ) / N ) A ( M / N ) = O .  Since M / N  is 

essential in Q(M)/N,  we have a contradiction. 

COROLLARY 6." If (if, ,.~) is perfect and 7r : M---~ M / N  is a torsion-free cover, 

then the following statements hold. 

(1) UomR (Q, N) = 0. 

(2) ExtR (N, X) = 0 for all X E ~. 

(3) E ( M / N )  = E(M) /N .  

PROOF. By Theorems 3 and 1 we have (1) and (2). By an obvious modification 

of the proof that Q ( M ) / N  is if-injective, we see that E ( M ) / N  is injective. 

If  zr : M ---> M / N  is a torsion-free cover and M is projective, then 

PROOF. The result is trivial if M = r a d M ;  so suppose there exists a 

maximal submodule X of M with Ne '  X. Then M = N + X, M / N  ~- X / ( X  n N), 

and we have a natural epimorphism 0 : X ~ M/N.  Since M is projective, there 

exists T:M--~ X such that f0 = 7r. Since k e r f  C_ ker 7r, we have that f is a 

monomorphism. 

Let F = Im f and ~ = 0 I~- We will show that F and ~ provide a torsion-free 

THEOREM 7. 

N C_ rad M. 
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cover for M/N.  Suppose that g : Y - - + M / N ,  where Y~,,~.  Then there exists 

h : Y--* M, and we have the following commutative diagram: 

M ~  h y 

F ~ M / N  

Then hf$ = hTr = g; so hf lifts g to F. Since ~b is onto, there are no 3--closed 

submodules of F contained in ker qJ (as (ker ~0)f -~ = N). Hence F is a torsion- 

free cover of M/N.  

Consider the inclusion 

diagram: 

map i  : F - - + M  and the following commutative 

i 
F ) M  

M / N  

By Theorem A, i is an isomorphism; so F = M. Since F_C X, we have a 

contradiction. 

Theorem 7 enables us to relate torsion-free covers to projective covers in the 

next result. In particular, it shows that the torsion-free cover R - +  R / I  studied 

by Matlis [6] for integral domains is actually a projective cover of R / L  

COROLLARY 8. If M is projective, if every proper submodule of M is contained 

in a maximal submodule (for example, if M is .finitely generated), and if 

7r : M--~ M / N  is a torsion-free cover, then 1r : M - ~  M / N  is a projective cover. 

A module has finite (Goldie) dimension if it contains no infinite direct sums of 

nonzero modules. 

THEOREM 9. Suppose that M is finite dimensional. If 7r : M--~ M / N  is a 

torsion-free cover and a : M - + M / N  is a precover, then a : M - - ~ M / N  is a 

torsion-free cover. 

PROOF. There exist mappings f and g such that the following diagram 

commutes: 
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f M< ' M  

M / N  

Since fTr = a and ga  = ~', we have  zr = ga = gflr, By T h e o r e m  A we have that  gf  

is an i s o m o r p h i s m .  Let  /3 = (gf) 1. Then  1 = gf/3 and f/37r = frr = a. Hence  by 

replacing f by f/3, we may  assume that  fTr = a,  ga  = lr, and gf = 1. Let  e = fg. 

T h e n  e Z = e ,  and M ~ - I m e G k e r e = I m g O k e r f - ~ M G k e r f .  Since M is 

finite d imensional ,  we must  have  ker  f = 0. Thus  f is an i somorphism,  and the 

result  follows. 

Our  final result  ex tends  [6, prop.  1]. 

COROLLARY 10. Suppose that M is a .finite dimensional, projective module and 

that 7r : M ~ M / N  is a torsion-free cover. 

(1) I f  a : M---~ M / N  is an epimorphism, then a : M---~ M / N  is a torsion-free 

cover. 
(2) I f  (~r, ~;) is perfect and a : Q(M)---> O ( M ) / N  is an epimorphism, then 

a : Q(M)---> Q ( M ) / N  is a torsion-free cover. 

PROOF. The  project ivi ty  of M gives that  a is a p recover ;  so (1) follows f rom 

T h e o r e m  9. For  (2) we have the following (not necessari ly commuta t ive )  

d iagram:  

f 
Q (M)  < , O ( M )  

Q ( M ) / N  

The  mapp ing  f is ob ta ined  by T h e o r e m  3, and g is ob ta ined  by extending  the 

m a p  given by the project ivi ty  of M. We have  ga = ~r on M and f~r = a. If 

m E M, we have mTr = mga = mgfTr; and so mgf ~ M. H e n c e  by T h e o r e m  A,  gf 

is an i somorph ism on M. Since Q (M)  is the ~--injective hull of M, then gf is also 

an i somorph ism on Q(M) .  If /3 = (gf)- t ,  we have gf/3 = 1; as in the p roof  of 

T h e o r e m  9, f is an i somorphism.  
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