A MODULE AS A TORSION-FREE COVER

BY

JOHN J. HUTCHINSON AND MARK L. TEPLY

ABSTRACT

Let R be a ring, and let $(\mathcal{T}, \mathcal{F})$ be an hereditary torsion theory of left R-modules. An epimorphism $\psi: M \to X$ is called a torsion-free cover of X if (1) $M \in \mathcal{F}$, (2) every homomorphism from a torsion-free module into X can be factored through M, and (3) ker ψ contains no nonzero \mathcal{T} -closed submodules of M. Conditions on M and N are studied to determine when the natural maps $M \to M/N$ and $Q(M) \to Q(M)/N$ are torsion-free covers, when Q(M) is the localization of M with respect to $(\mathcal{T}, \mathcal{F})$. If $M \to M/N$ is a torsion-free cover and M is projective, then $N \subseteq$ rad M. Consequently, the concepts of projective cover and torsion-free cover coincide in some interesting cases.

Let R be a ring with identity, and let $_{\mathbb{R}}\mathcal{M}$ be the category of unital left R-modules. Let $(\mathcal{T}, \mathcal{F})$ be a hereditary torsion theory on $_{\mathbb{R}}\mathcal{M}$ with filter of left ideals \mathcal{L} . Let R be torsion free and let Q be the quotient ring of R with respect to $(\mathcal{T}, \mathcal{F})$. If $X \in _{\mathbb{R}}\mathcal{M}$, let E(X) denote an injective hull of X, and Q(X) the quotient module of X with respect to $(\mathcal{T}, \mathcal{F})$. For all notions concerning torsion theories and other undefined terms, we refer the reader to [4].

Throughout this paper let M be a torsion-free module with submodule N and canonical epimorphism $\pi: M \to M/N$. Let $\pi^*: \operatorname{Hom}_R(Q, M) \to \operatorname{Hom}_R(Q, M/N)$ be the canonical R (and Q) homomorphism. The mapping $\pi: M \to M/N$ is called a *precover* for M/N if any $f \in \operatorname{Hom}(X, M/N)$, where $X \in \mathcal{F}$, can be lifted canonically to $\operatorname{Hom}(X, M)$. The precover is a *torsion-free* cover if, in addition, N contains no nonzero \mathcal{T} -closed submodules of M. In order to eliminate trivial cases we will henceforth assume that $M/N \notin \mathcal{F}$.

The existence of torsion-free covers for modules over a commutative integral domain was first examined by Enochs [3]. The existence of torsion-free covers for abstract torsion theories over more general rings is the subject of a number of papers including [5] and [7]. However, the problem of determining when a module is a torsion-free cover of another remains a distinct problem, which was

Received April 24, 1983

first investigated by Banachewski [1]. For perfect torsion theories, Banachewski described the torsion-free cover of a module X as the evaluation map applied to a certain submodule of $\operatorname{Hom}_R(Q, E(X))$. We wish to study the more accessible situation where the canonical map $M \to M/N$ is a torsion-free cover. Recently, Cheatham [2] and Matlis [6] have obtained results about when a natural map from a quotient field or a commutative integral domain can be the cover of a module. In this paper we generalize a result of [2] and the main result of [6] to more general types of modules in the setting of an abstract torsion theory. (See Theorem 1 and Corollaries 4 and 5.) This enables us to obtain a result relating torsion-free covers to projective covers. Since the proofs in [2] and [6] rely heavily on properties of commutative rings, our proofs must necessarily be quite different from the previous ones; fortunately, the proofs of our key results (Theorems 2 and 3) are considerably shorter than the corresponding proofs in [6].

For the sake of easy reference, we include the following folk theorems, whose proofs are easy modifications of published results.

THEOREM A. If E, E', and E'' are R-modules with $\psi: E \to E''$ and $\psi': E' \to E''$ torsion-free covers and if $f: E \to E'$ satisfies $f\psi' = \psi$, then f is an isomorphism.

PROOF. See the proof of [3, theorem 2].

THEOREM B. Suppose that $X \in {}_{R}M$ and that $(\mathcal{T}, \mathcal{F})$ is perfect. Let $H = \text{Hom}_{R}(Q, E(X))$ and $C(X) = \{f \in H \mid (1)f \in X\}$. Define $\phi : C(X) \to X$ by $(f)\phi = (1)f$. Then $\phi : C(X) \to X$ is a torsion-free cover of X.

PROOF. See [1] or [5, page 247].

We are now ready to give a generalization of [2, theorem 1].

THEOREM 1. Suppose that $(\mathcal{T}, \mathcal{F})$ has exact localization, that M is \mathcal{T} -injective, and that $M/N \notin \mathcal{F}$. Then the following statements are equivalent.

(1) $\pi: M \to M/N$ is a torsion-free cover.

(2) M/N is \mathcal{T} -injective and π^* is an isomorphism.

(3) M/N is \mathcal{T} -injective, $\operatorname{Hom}_{R}(Q, N) = 0$, and $\operatorname{Ext}_{R}(Q, N) = 0$.

(4) $\operatorname{Ext}_{R}(X, N) = 0$ for all $X \in \mathcal{F}$ and $\operatorname{Hom}_{R}(Q, N) = 0$.

PROOF. (1) \Rightarrow (2). If $I \in \mathcal{L}$ and $f: I \to M/N$, there exists $g: I \to M$ such that $g\pi = f$. There exists $h: R \to M$ such that $h \mid_I = g$. Then $h\pi$ extends f; so M/N is \mathcal{T} -injective. By the definition of torsion-free cover we have the following exact sequence:

$$0 \longrightarrow \operatorname{Hom}(Q, N) \to \operatorname{Hom}(Q, M) \xrightarrow{\pi^*} \operatorname{Hom}(Q, M/N) \longrightarrow 0.$$

If $0 \neq f \in \text{Hom}(Q, N)$, then Im f, being a torsion-free image of a torsion-free \mathcal{T} -injective module, is a torsion-free \mathcal{T} -injective module [4, prop. 16.1]. Hence Im f is \mathcal{T} -closed in M; so f = 0. Hence Hom(Q, N) = 0 and π^* is an isomorphism.

(2) \Rightarrow (3). Since π^* is an isomorphism, we have Hom(Q, N) = 0 and

$$0 \longrightarrow \operatorname{Hom}(Q, M) \xrightarrow{\pi^{*}} \operatorname{Hom}(Q, M/N) \longrightarrow \operatorname{Ext}(Q, N) \longrightarrow \operatorname{Ext}(Q, M)$$

is exact. Since M is \mathcal{T} -injective, we also have the exact sequence

 $0 = \operatorname{Ext}(Q/R, M) \to \operatorname{Ext}(Q, M) \to \operatorname{Ext}(R, M) = 0.$

Hence Ext(Q, M) = 0, and it follows that Ext(Q, N) = 0.

(3) \Rightarrow (4). If $X \in \mathcal{F}$, then we have the exact sequence:

$$\operatorname{Ext}(Q(X), N) \to \operatorname{Ext}(X, N) \to \operatorname{Ext}^2(Q(X)/X, N).$$

If $0 \rightarrow L \rightarrow \bigoplus Q \rightarrow Q(X) \rightarrow 0$ is a free resolution of Q(X) as a Q-module, then L is a Q-module and we have the exact sequence:

$$0 = \operatorname{Hom}(\bigoplus Q, N) \to \operatorname{Hom}(L, N) \to \operatorname{Ext}(Q(X), N) \to \operatorname{Ext}(\bigoplus Q, N) = 0.$$

Since L is a Q-module, then Hom(L, N) = 0 by (3), and hence Ext(Q(X), N) = 0.

Since $Q(X)/X \in \mathcal{T}$, we have by the exactness of the localizing functor of $(\mathcal{T}, \mathcal{F})$ and [4, prop. 16.1] that $\operatorname{Ext}^2(Q(X)/X, M) = 0$. Hence the exactness of

$$0 = \operatorname{Ext}(Q(X)/X, M/N) \to \operatorname{Ext}^2(Q(X)/X, N) \to \operatorname{Ext}^2(Q(X)/X, M) = 0$$

implies that $\operatorname{Ext}^2(Q(X)/X, N) = 0$. Hence $\operatorname{Ext}(X, N) = 0$.

(4) \Rightarrow (1). If $X \in \mathcal{F}$, then

$$\operatorname{Hom}(X, M) \rightarrow \operatorname{Hom}(X, M/N) \rightarrow \operatorname{Ext}(X, N) = 0$$

and hence maps from X to M/N can be factored through M.

If C is contained in N and C is a nonzero \mathcal{T} -closed submodule of M, then Q(C) = C and C is a left Q-module. Hence $0 \neq \text{Hom}(Q, C) \subseteq \text{Hom}(Q, N)$, which is impossible. Hence N contains no \mathcal{T} -closed submodules.

Our next result gives a key property of E(M/N) in the case where $M \rightarrow M/N$ is a torsion-free cover.

THEOREM 2. If $\pi: M \to M/N$ is a torsion-free cover, then E(M)/N is an essential extension of M/N.

PROOF. Suppose that $0 \neq e + N \in E(M)/N$ with $R(e+N) \cap (M/N) = 0$. It follows that $Re \cap M \subseteq N$ and that the epimorphism $\pi_1 : Re + M \rightarrow M/N$ given by $(re + m)\pi_1 = m + N$ $(r \in R, m \in M)$ is well-defined with ker $\pi_1 = Re + N$.

If $i: M \to Re + M$ is the inclusion map, then clearly $i\pi_1 = \pi$. If $X \in \mathscr{F}$ and $g: X \to M/N$, there exists $h: X \to M$ such that $h\pi = g$. Then $hi\pi_1 = h\pi = g$; so *hi* lifts g to M + Re. If C is a submodule of ker π_1 that is \mathscr{T} -closed in Re + M, then $C \cap M$ is \mathscr{T} -closed in M. But

$$C \cap M \subseteq \ker \pi_1 \cap M = (Re + N) \cap M \subseteq N.$$

Hence C = 0; and so $\pi_1 : Re + M \rightarrow M/N$ is a torsion-free cover. Since $i\pi_1 = \pi$, we have by Theorem A that *i* is an isomorphism. Hence Re + M = M and $e \in M$, which is contrary to the assumption.

THEOREM 3. Let $(\mathcal{T}, \mathcal{F})$ be a perfect torsion theory. If $\pi: M \to M/N$ is a torsion-free cover, then $Q(M) \to Q(M)/N$ is a torsion-free cover.

PROOF. By Theorem 2 we may assume that E(M/N) = E(Q(M)/N). Let H = Hom(Q, E(M/N)) and $C = \{f \in H \mid (1)f \in Q(M)/N\}$.

If $x \in Q(M)$, define $h_x \in H$ by $(q)h_x = qx + N$. Since N has no nonzero Q-submodules, we may assume that $Q(M) \subseteq C$ via the correspondence $x \to h_x$. By Theorem B we have that C is a torsion-free cover of Q(M)/N, and we may identify M with $\{f \in H \mid (1)f \in M/N\}$.

If $f \in C \setminus M$, then $(1)f \in Q(M)/N$ and there exists $J \in \mathscr{L}$ such that $J((1)f) \subseteq M/N$. If $r \in J$, then using the *R*-module structure on *H* and *F*, we have

$$(1)(rf) = (r)f = r((1)f) \in M/N.$$

Thus, under the isomorphism, $rf \in M$, and we have $C/M \in \mathcal{T}$. Since $f \notin M$, $0 \neq (1)f \in Q(M)/N$. Since M/N is essential in Q(M)/N by Theorem 2, there exists $r \in R$ with $0 \neq r((1)f) = (1)(rf) \in M/N$. Hence $0 \neq rf \in M$ and M is essential in C. We conclude that $M \subseteq Q(M) \subseteq C \subseteq E(M)$ with $C/M \in \mathcal{T}$. Hence C = Q(M) and $Q(M) \rightarrow Q(M)/N$ is a torsion-free cover.

Our next two corollaries are generalizations of the main result (Theorem 1) of [6].

COROLLARY 4. Suppose that N contains no nonzero \mathcal{T} -closed submodules of M. If $(\mathcal{T}, \mathcal{F})$ is perfect, then the following statements are equivalent.

- (1) $M \rightarrow M/N$ is a torsion-free cover.
- (2) $Q(M) \rightarrow Q(M)/N$ is a torsion-free cover.
- (3) $\operatorname{Ext}_{R}(X, N) = 0$ for all $X \in \mathcal{F}$.

PROOF. (2) \Leftrightarrow (3). The standing hypothesis gives that Hom(Q, N) = 0; so this equivalence follows from Theorem 1.

(1) \Rightarrow (2) is Theorem 3.

 $(3) \Rightarrow (1)$ is clear.

COROLLARY 5. If $(\mathcal{T}, \mathcal{F})$ is perfect, then the following statements are equivalent.

(1) $\pi: M \to M/N$ is a torsion-free cover.

(2) $\pi: Q(M) \to Q(M)/N$ is a torsion-free cover and Q(M)/N is the \mathcal{T} -injective hull of M/N.

PROOF. (1) \Rightarrow (2). The first part follows from Theorem 3. The second part follows from Theorem 2 and [5, prop. 2.4].

(2) \Rightarrow (1). By Theorem 1 we have $\operatorname{Ext}(X, N) = 0$ for all $X \in \mathscr{F}$; and hence $\pi : M \to M/N$ is a precover. If $C \subseteq N$ is a nonzero \mathscr{T} -closed submodule of M, then C is not \mathscr{T} -closed in Q(M). Now Q(C) is the \mathscr{T} -closure of C in Q(M), $Q(C) \neq C$, and $Q(C) \cap M = C$. Thus $(Q(C)/N) \cap (M/N) = 0$. Since M/N is essential in Q(M)/N, we have a contradiction.

COROLLARY 6. If $(\mathcal{T}, \mathcal{F})$ is perfect and $\pi : M \to M/N$ is a torsion-free cover, then the following statements hold.

- (1) $\operatorname{Hom}_{R}(Q, N) = 0.$
- (2) $\operatorname{Ext}_{R}(N, X) = 0$ for all $X \in \mathcal{F}$.
- (3) E(M/N) = E(M)/N.

PROOF. By Theorems 3 and 1 we have (1) and (2). By an obvious modification of the proof that Q(M)/N is \mathcal{T} -injective, we see that E(M)/N is injective.

THEOREM 7. If $\pi: M \to M/N$ is a torsion-free cover and M is projective, then $N \subseteq \text{rad } M$.

PROOF. The result is trivial if $M = \operatorname{rad} M$; so suppose there exists a maximal submodule X of M with $N \not\subseteq X$. Then M = N + X, $M/N \cong X/(X \cap N)$, and we have a natural epimorphism $\theta: X \to M/N$. Since M is projective, there exists $f: M \to X$ such that $f\theta = \pi$. Since ker $f \subseteq \ker \pi$, we have that f is a monomorphism.

Let F = Im f and $\psi = \theta |_{F}$. We will show that F and ψ provide a torsion-free

cover for M/N. Suppose that $g: Y \to M/N$, where $Y \in \mathcal{F}$. Then there exists $h: Y \to M$, and we have the following commutative diagram:

Then $hf\psi = h\pi = g$; so hf lifts g to F. Since ψ is onto, there are no \mathcal{T} -closed submodules of F contained in ker ψ (as $(\ker \psi)f^{-1} = N$). Hence F is a torsion-free cover of M/N.

Consider the inclusion map $i: F \rightarrow M$ and the following commutative diagram:

By Theorem A, *i* is an isomorphism; so F = M. Since $F \subseteq X$, we have a contradiction.

Theorem 7 enables us to relate torsion-free covers to projective covers in the next result. In particular, it shows that the torsion-free cover $R \rightarrow R/I$ studied by Matlis [6] for integral domains is actually a projective cover of R/I.

COROLLARY 8. If M is projective, if every proper submodule of M is contained in a maximal submodule (for example, if M is finitely generated), and if $\pi: M \to M/N$ is a torsion-free cover, then $\pi: M \to M/N$ is a projective cover.

A module has finite (Goldie) dimension if it contains no infinite direct sums of nonzero modules.

THEOREM 9. Suppose that M is finite dimensional. If $\pi: M \to M/N$ is a torsion-free cover and $\alpha: M \to M/N$ is a precover, then $\alpha: M \to M/N$ is a torsion-free cover.

PROOF. There exist mappings f and g such that the following diagram commutes:

Since $f\pi = \alpha$ and $g\alpha = \pi$, we have $\pi = g\alpha = gf\pi$. By Theorem A we have that gf is an isomorphism. Let $\beta = (gf)^{-1}$. Then $1 = gf\beta$ and $f\beta\pi = f\pi = \alpha$. Hence by replacing f by $f\beta$, we may assume that $f\pi = \alpha$, $g\alpha = \pi$, and gf = 1. Let e = fg. Then $e^2 = e$, and $M \cong \operatorname{Im} e \bigoplus \ker e = \operatorname{Im} g \bigoplus \ker f \cong M \bigoplus \ker f$. Since M is finite dimensional, we must have $\ker f = 0$. Thus f is an isomorphism, and the result follows.

Our final result extends [6, prop. 1].

COROLLARY 10. Suppose that M is a finite dimensional, projective module and that $\pi: M \to M/N$ is a torsion-free cover.

(1) If $\alpha: M \to M/N$ is an epimorphism, then $\alpha: M \to M/N$ is a torsion-free cover.

(2) If $(\mathcal{T}, \mathcal{F})$ is perfect and $\alpha : Q(M) \to Q(M)/N$ is an epimorphism, then $\alpha : Q(M) \to Q(M)/N$ is a torsion-free cover.

PROOF. The projectivity of M gives that α is a precover; so (1) follows from Theorem 9. For (2) we have the following (not necessarily commutative) diagram:

The mapping f is obtained by Theorem 3, and g is obtained by extending the map given by the projectivity of M. We have $g\alpha = \pi$ on M and $f\pi = \alpha$. If $m \in M$, we have $m\pi = mg\alpha = mgf\pi$; and so $mgf \in M$. Hence by Theorem A, gf is an isomorphism on M. Since Q(M) is the \mathcal{T} -injective hull of M, then gf is also an isomorphism on Q(M). If $\beta = (gf)^{-1}$, we have $gf\beta = 1$; as in the proof of Theorem 9, f is an isomorphism.

ACKNOWLEDGEMENT

The work for this paper was done while the first-named author was a visitor at

the University of Florida. He is grateful for the kind hospitality shown to him during that visit.

References

1. B. Banaschewski, On coverings of modules, Math. Nachr. 31 (1966), 51-71.

2. T. Cheatham, The quotient field as a torsion-free covering module, Isr. J. Math. 33 (1979), 172-176.

3. E. Enochs, Torsion free covering modules, Proc. Am. Math. Soc. 14 (1963), 884-889.

4. J. Golan, *Localization of Noncommutative Rings*, Pure and Applied Math. Series 30, Marcel Dekker, New York, 1975.

5. J. Golan and M. Teply, Torsion-free covers, Isr. J. Math. 15 (1973), 237-256.

6. E. Matlis, The ring as a torsion-free cover, Isr. J. Math. 37 (1980), 211-230.

7. M. Teply, Torsion-free injective modules, Pacific J. Math. 28 (1969), 441-453.

Department of Mathematics Wichita State University Wichita, KS 67208 USA

DEPARTMENT OF MATHEMATICS UNIVERSITY OF FLORIDA GAINESVILLE, FL 32611 USA