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A MODULE AS A TORSION-FREE COVER

BY
JOHN J. HUTCHINSON AND MARK L. TEPLY

ABSTRACT

Let R be a ring, and let (7, %) be an hereditary torsion theory of left
R-modules. An epimorphism ¢ : M — X is called a torsion-free cover of X if
(1) M € %, (2) every homomorphism from a torsion-free module into X can be
factored through M, and (3) ker ¢ contains no nonzero 7 -closed submodules of
M. Conditions on M and N are studied to determine when the natural maps
M — M/N and Q(M)— Q(M)/N are torsion-free covers, when Q(M) is the
localization of M with respect to (7, %). If M — M/N is a torsion-free cover
and M is projective, then N C rad M. Consequently, the concepts of projective
cover and torsion-free cover coincide in some interesting cases.

Let R be a ring with identity, and let =4 be the category of unital left
R-modules. Let (7, %) be a hereditary torsion theory on g with filter of left
ideals Z. Let R be torsion free and let Q be the quotient ring of R with respect
to (7, F). If X €z, let E(X) denote an injective hull of X, and Q(X) the
quotient module of X with respect to (7, ). For all notions concerning torsion
theories and other undefined terms, we refer the reader to [4].

Throughout this paper let M be a torsion-free module with submodule
N and canonical epimorphism = :M— M/N. Let #*:Homg(Q,M)—
Homg (Q, M/N) be the canonical R (and Q) homomorphism. The mapping
m:M— M/N is called a precover for M/N if any f € Hom(X, M/N), where
X € %, can be lifted canonically to Hom(X, M). The precover is a torsion-free
cover if, in addition, N contains no nonzero J -closed submodules of M. In order
to eliminate trivial cases we will henceforth assume that M/N& %.

The existence of torsion-free covers for modules over a commutative integral
domain was first examined by Enochs [3]. The existence of torsion-free covers
for abstract torsion theories over more general rings is the subject of a number of
papers including [5] and [7]. However, the problem of determining when a
module is a torsion-free cover of another remains a distinct problem, which was
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first investigated by Banachewski [1]. For perfect torsion theories, Banachewski
described the torsion-free cover of a module X as the evaluation map applied to
a certain submodule of Homg (Q, E(X)). We wish to study the more accessible
situation where the canonical map M — M/N is a torsion-free cover. Recently,
Cheatham [2] and Matlis [6] have obtained results about when a natural map
from a quotient field or 2 commutative integral domain can be the cover of a
module. In this paper we generalize a result of [2] and the main result of [6] to
more general types of modules in the setting of an abstract torsion theory. (See
Theorem 1 and Corollaries 4 and 5.) This enables us to obtain a result relating
torsion-free covers to projective covers. Since the proofs in (2] and [6] rely
heavily on properties of commutative rings, our proofs must necessarily be quite
different from the previous ones; fortunately, the proofs of our key results
(Theorems 2 and 3) are considerably shorter than the corresponding proofs in
[6].

For the sake of easy reference, we include the following folk theorems, whose
proofs are easy modifications of published results.

THEOREM A. If E, E', and E" are R-modules with ¢:E—E" and
Y’ E'—> E" torsion-free covers and if f: E — E' satisfies f§y’ = 4, then f is an
isomorphism.

PrROOF. See the proof of [3, theorem 2].

THEOREM B. Suppose that X € kM and that (7, %) is perfect. Let H =
Home (Q,E(X)) and C(X)={f€H|(1)f EX}. Define ¢:C(X)—X by
(f)d =(1)f. Then ¢ : C(X)— X is a torsion-free cover of X.

Proor. See [1] or [5, page 247].

We are now ready to give a generalization of [2, theorem 1].

THEOREM 1. Suppose that (7, F) has exact localization, that M is 7 -injective,
and that MINZ %. Then the following statements are equivalent.

(1) m:M—> M/N is a torsion-free cover.

(2) M/N is I -injective and mw* is an isomorphism.

(3) M/N is I -injective, Homgz (Q, N)=0, and Extg(Q,N)=0.

(4) Extr (X, N)=0 for all X € ¥ and Homg (Q, N)=0.

Proor. (1) = (2).If I€ £ and f : I - M/N, there exists g : [ = M such that
g = f. There exists h : R — M such that h |, = g. Then hm extends f; so M/N
is 7 -injective. By the definition of torsion-free cover we have the following exact
sequence:
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0—> Hom(Q, N)— Hom(Q, M)—"—; Hom(Q, M/N)—0.

If 0#f&Hom(Q,N), then Im f, being a torsion-free image of a torsion-free
T -injective module, is a torsion-free 7 -injective module [4, prop. 16.1}. Hence
Imf is J-closed in M; so f=0. Hence Hom(Q,N)=0 and =* is an
isomorphism.

(2) = (3). Since #* is an isomorphism, we have Hom(Q, N) =0 and

0—> Hom(Q, M)->> Hom(Q, M/N)—> Ext(Q, N)— Ext(Q, M)

is exact. Since M is 7 -injective, we also have the exact sequence

0 = Ext(Q/R, M)— Ext(Q, M)— Ext(R, M) = 0.

Hence Ext(Q, M) =0, and it follows that Ext(Q, N)=0.
(3) > 4). If X € %, then we have the exact sequence:

Ext(Q(X), N)— Ext(X, N)— Ext’(Q(X)/ X, N).

If 0—L—>@) Q— Q(X)—0is a free resolution of Q(X) as a Q-module, then L
is a Q-module and we have the exact sequence:

0 =Hom(}Q, N)— Hom(L, N)— Ext(Q(X), N)= Ext(pQ, N) =0.

Since L is a Q-module, then Hom(L, N) = 0 by (3), and hence Ext(Q(X),N)=
0.

Since Q(X)/X € 7, we have by the exactness of the localizing functor of
(7, %) and [4, prop. 16.1] that Ext*(Q(X)/X, M) = 0. Hence the exactness of

0 = Ext(Q(X)/X, M/N)— Ext(Q(X)/X, N)— Ext(Q(X)/ X, M) = 0

implies that Ext’(Q(X)/X, N) =0. Hence Ext(X, N)=0.
@) => (1). If X € %, then

Hom(X, M)—Hom(X, M/N)—>Ext(X,N)=0

and hence maps from X to M/N can be factored through M.

If C is contained in N and C is a nonzero J-closed submodule of M, then
Q(C)=C and C is a left Q-module. Hence 07# Hom(Q, C)C Hom(Q, N),
which is impossible. Hence N contains no 7 -closed submodules.

Our next result gives a key property of E(M/N) in the case where M — M/N
is a torsion-free cover.
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THEOREM 2. If w:M — M/N is a torsion-free cover, then E(M)/N is an
essential extension of M/N.

Proor. Suppose that 0 # e + N € E(M)/N with R(e + N)N(M/N)=0. It
follows that Re N M C N and that the epimorphism 7, : Re + M — M/N given
by (re + m)m =m+ N (r €R, m €M) is well-defined with ker 7, = Re + N.

If i: M— Re +M is the inclusion map, then clearly im, = 7. If X € % and
g : X = M/N, there exists h : X — M such that he = g Then him, = hm = g;so
hi lifts g to M + Re. If C is a submodule of ker 7, that is -closed in Re + M,
then CN M is J-closed in M. But

CNMCkerm N M=(Re+N)NMCN.

Hence C =0; and so 7, : Re + M — M/N is a torsion-free cover. Since im, = m,
we have by Theorem A that i is an isomorphism. Hence Re + M =M and
e € M, which is contrary to the assumption.

THEOREM 3. Let (9, %) be a perfect torsion theory. If m: M — M/N is a
torsion-free cover, then Q(M)~> Q(M)/N is a torsion-free cover.

Proor. By Theorem 2 we may assume that E(M/N)=E(Q(M)/N). Let
H =Hom(Q, E(M/N)) and C ={f € H|(1)f € Q(M)/N}.

If x € Q(M), define h, € H by (q)h. = gx + N. Since N has no nonzero
Q-submodules, we may assume that Q(M)C C via the correspondence x — h,.
By Theorem B we have that C is a torsion-free cover of Q(M)/N, and we may
identify M with {f € H | (1)f € M/N}.

If f€ C\M, then (1)f € Q(M)/N and there exists J € & such that J((1)f)C
M/N. If r €J, then using the R-module structure on H and F, we have

W(rf)=(r)f = r((1)f) € M/N.

Thus, under the isomorphism, rf € M, and we have C/M € 9. Since f& M,
0#(1)f € Q(M)/N. Since M/N is essential in Q(M)/N by Theorem 2, there
exists r €R with 0Z r(1)f)=)(rf)EM/N. Hence 0#rfEM and M is
essential in C. We conclude that MC Q(M)C CC E(M) with C/IM € J.
Hence C = Q(M) and Q(M)— Q(M)/N is a torsion-free cover.

Our next two corollaries are generalizations of the main result (Theorem 1) of

[6].

COROLLARY 4. Suppose that N contains no nonzero J -closed submodules of
M. If (9, %) is perfect, then the following statements are equivalent.
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(1) M— M|/N is a torsion-free cover.
(2) O(M)— Q(M)/N is a torsion-free cover.
(3) Extg (X,N)=0 forall XEF.

PrROOF. (2) & (3). The standing hypothesis gives that Hom(Q, N) = 0; so this
equivalence follows from Theorem 1.

(1) = (2) is Theorem 3.

{3) > (1) is clear.

COROLLARY 5. If (J,%) is perfect, then the following statements are
equivalent. ‘

(1) w: M — M/N is a torsion-free cover.

(2) 7: O(M)—> Q(M)/N s a torsion-free cover and Q(M)/N is the T -injective
hull of M/N.

ProOOF. (1) = (2). The first part follows from Theorem 3. The second part
follows from Theorem 2 and [5, prop. 2.4].

(2) > (1). By Theorem 1 we have Ext(X,N)=0 for all X € ¥; and hence
m:M— MJN is a precover. If C C N is a nonzero 7 -closed submodule of M,
then C is not J-closed in Q(M). Now Q(C) is the T -closure of C in Q(M),
Q(C)#C, and Q(C)NM = C. Thus (Q(C)/N)N(M/N)=0. Since M/N is
essential in Q(M)/N, we have a contradiction.

CorOLLARY 6. If (7, %) is perfect and 7 : M~ M/N is a torsion-free cover,
then the following statements hold.

(1) Homz (Q,N)=0.

(2) Extg(N,X)=0 for all X € %.

3) E(M/N)=E(M)/N.

PrOOF. By Theorems 3 and 1 we have (1) and (2). By an obvious modification
of the proof that Q(M)/N is J-injective, we see that E(M)/N is injective.

THEOREM 7. If m: M — M/N is a torsion-free cover and M is projective, then
NCrad M.

Proor. The result is trivial if M =rad M; so suppose there exists a
maximal submodule X of M with NZ X. Then M = N+ X, M/N = X/(X N N),
and we have a natural epimorphism 6 : X — M/N. Since M is projective, there
exists f: M — X such that f8 =« Since kerf C ker o, we have that f is a
monomorphism.

Let F=Imf and ¢y = 0 l r. We will show that F and ¢ provide a torsion-free
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cover for M/N. Suppose that g: Y — M/N, where Y € # Then there exists
h:Y— M, and we have the following commutative diagram:

M—" vy

fl\lg

Then hfy = har = g; so hf lifts g to F. Since ¢ is onto, there are no 7 -closed
submodules of F contained in ker ¢ (as (ker ¢/)f™' = N). Hence F is a torsion-
free cover of M/N.

Consider the inclusion mapi:F—M and the following commutative
diagram:

F——r———bM

M|N

By Theorem A, i is an isomorphism; so F =M. Since FC X, we have a
contradiction.

Theorem 7 enables us to relate torsion-free covers to projective covers in the
next result. In particular, it shows that the torsion-free cover R — R/I studied
by Matlis {6] for integral domains is actually a projective cover of R/L

CoroLLARY 8. If M is projective, if every proper submodule of M is contained
in a maximal submodule (for example, if M is finitely generated), and if
m:M— M/N is a torsion-free cover, then w: M — M/N is a projective cover.

A module has finite (Goldie) dimension if it contains no infinite direct sums of
nonzero modules.

THEOREM 9. Suppose that M is finite dimensional. If w:M— MJ/N is a
torsion-free cover and o : M — M/N is a precover, then o :M— M|N is a
torsion-free cover.

PrOOF. There exist mappings f and g such that the following diagram
commutes:
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M————)M

\ /

M/N

Since fr = & and ga = 7, we have w = ga = gfm. By Theorem A we have that gf
is an isomorphism. Let g = (gf)". Then 1 =gfB and fBm = fm = a. Hence by
replacing f by fB8, we may assume that fr =«, ga =7, and gf =1. Let e = fg.
Then ¢2=e, and M=Ime Pkere =Img@kerf%:MG§kerf. Since M 1s
finite dimensional, we must have ker f =0. Thus f is an isomorphism, and the
result follows.

Our final result extends [6, prop. 1].

CorOLLARY 10. Suppose that M is a finite dimensional, projective module and
that w: M — M/N is a torsion-free cover.

(1) If « : M — M/N is an epimorphism, then a : M — M/[N is a torsion-free
cover.

) If (9,%) is perfect and o : Q(M)— Q(M)/N is an epimorphism, then
a:Q(M)— Q(M)/N is a torsion-free cover.

Proor. The projectivity of M gives that a is a precover; so (1) follows from
Theorem 9. For (2) we have the following (not necessarily commutative)
diagram:

(M)<__ QM)

N/

Q(M)IN
The mapping f is obtained by Theorem 3, and g is obtained by extending the
map given by the projectivity of M. We have ga =7 on M and fr =a. If
m € M, we have mm = mga = mgfw; and so mgf € M. Hence by Theorem A, gf
is an isomorphism on M. Since Q(M) is the J -injective hull of M, then gf is also
an isomorphism on Q(M). If B =(gf)™', we have gf =1; as in the proof of
Theorem 9, f is an isomorphism.
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